On the Equivalence of Euler-Lagrange and Noether Equations
نویسندگان
چکیده
منابع مشابه
The Reduced Euler-Lagrange Equations
Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...
متن کاملEuler-lagrange Equations
. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملOn the metrics and euler-lagrange equations of computational anatomy.
This paper reviews literature, current concepts and approaches in computational anatomy (CA). The model of CA is a Grenander deformable template, an orbit generated from a template under groups of diffeomorphisms. The metric space of all anatomical images is constructed from the geodesic connecting one anatomical structure to another in the orbit. The variational problems specifying these metri...
متن کاملThe Euler – Lagrange Equations for Nonholonomic Systems
This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Physics, Analysis and Geometry
سال: 2016
ISSN: 1385-0172,1572-9656
DOI: 10.1007/s11040-016-9203-3